The art of prompt engineering as an old/new form of dialogic information seeking using artificial intelligence models


Monika Krakowska 

Afiliacja: ,  Polska

Magdalena Zych 


Abstrakt

Cel/Teza: Artykuł syntetyzuje teoretyczne i praktyczne rozważania na temat komunikacji dialogowej z sztuczną inteligencją, koncentrując się na uznanych modelach wyszukiwania informacji. Bada interdyscyplinarny charakter badań nad zachowaniami informacyjnymi oraz ewolucję modeli wyszukiwania. 

Koncepcja/Metody badań: Zastosowano metodologię jakościową, obejmującą krytyczną analizę literatury oraz studium przypadku wykorzystujące ChatGPT do wyszukiwania literatury naukowej. 

Wyniki i wnioski: Analiza ujawniła współzależności między tradycyjnymi a nowoczesnymi modelami, podkreślając poznawcze i eksploracyjne aspekty wyszukiwania informacji. 

Ograniczenia badań: Skoncentrowano się na specyficznych modelach prompt engineering oraz jednym studium przypadku. 

Zastosowania praktyczne: Zrozumienie uznanych modeli jest kluczowe dla rozwoju prompt engineering. 

Oryginalność/Wartość poznawcza: Niniejsze badanie wypełnia lukę w badaniach nad integracją modeli wyszukiwania informacji z prompt engineering. 

 


Akakpo, M. G. (2024). Skilled for the Future: Information Literacy for AI Use by University Students in Africa and the Role of Librarians. Internet Reference Services Quarterly, 28(1), 19–26. https://doi.org/10.1080/10875301.2023.2280566
Aryani, A. (2023, December 2). 8 Types of Prompt Engineering. Medium, [12.10.2024], https://medium.com/@amiraryani/8-types-of-prompt-engineering-5322fff77bdf
Bates, M. E. (2024). Voices of the searchers. Computers in Libraries, 44(2), 35–35.
Bates, M. J. (1999). The invisible substrate of information science. Journal of the American society for information science, 50(12), 1043-1050.
Bates, M. J. (1990). Where should the person stop and the information search interface start?. Information Processing & Management, 26(5), 575-591.
Bawden, D., Robinson, L. (2011). Individual differences in information-related behaviour:
What do we know about information styles? W: A. Spink, J. Heinström (red.). New
Directions in Information Behaviour. Library and Information Science, 1. London, UK: Emerald, 282–300.
Belkin, N. J., & Cool, C. (1993, March). The concept of information seeking strategies and its use in the design of information retrieval systems. In: AAAI Spring Symposium on Case-Based Reasoning and information retrieval, [12.10.2024], https://cdn.aaai.org/Symposia/Spring/1993/SS-93-07/SS93-07-001.pdf
Belkin, N.J., Marchetti, P.G., Cool, C. (1993). BRAQUE: design of an interface to support user interaction in information retrieval. Information Processing & Management, 29(3), 324-344.
Belkin, N. J., Cool, C., Stein, A., Thiel, U. (1995). Cases, scripts, and information-seeking strategies: On the design of interactive information retrieval systems. Expert systems with applications, 9(3), 379-395.
Cangiano, A. (2023). Prompt Engineering for Everyone. Cognitive Class, [12.10.2024], https://cognitiveclass.ai/courses/prompt-engineering-for-everyone
Case, D.O., Given, L.M. (2016). Looking for Information. A Survey of Research on Information Seeking, Needs, and Behavior (4th edition). Bingley: Emerald Group Publishing Limited.
Chen, J., Guo, F., Ren, Z., Li, M., & Ham, J. (2024). Effects of anthropomorphic design cues of chatbots on users’ perception and visual behaviors. International Journal of Human–Computer Interaction, 40(14), 3636-3654.
Chen, S., Li, Y., Lu, S., Van, H., Aerts, H. J. W. L., Savova, G. K., Bitterman, D. S. (2024). Evaluating the ChatGPT family of models for biomedical reasoning and classification. Journal of the American Medical Informatics Association, 31(4), 940–948. https://doi.org/10.1093/jamia/ocad256
Cisek, S. (2010). Metoda analizy i krytyki piśmiennictwa w nauce o informacji i bibliotekoznawstwie w XXI wieku. Przegląd Biblioteczny, 78(3), 273–284, [12.10.2024], https://ruj.uj.edu.pl/xmlui/bitstream/handle/item/58573/cisek_metoda_analizy_i_krytyki_pismiennictwa_2010.pdf?sequence=1&isAllowed=y
Cisek, S. (2017). Zachowania informacyjne. W: A. Żbikowska-Migoń, M. Skalska-Zlat (red.). Encyklopedia książki. Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego, t. II, s. 643–647.
Corral, M. J. (2023, August 2). Prompt Patterns You Should Know. Medium, [12.10.2024], https://medium.com/@corraljrmiguel/21-prompt-patterns-you-should-know-636c931bba2a
Ellis, D. (1992). The physical and cognitive paradigms in information retrieval research. Journal of Documentation, 48(1), 45-64.
Ellis, D. (1989). A behavioural approach to information retrieval system design. Journal of Documentation, 45(3), 171-212.
Fidel, R. (2011). Approaches to investigating information interaction and behaviour. In: I. Ruthven, D. Kelly (eds.). Interactive Information Seeking, Behaviour and Retrieval. London: Facet Publishing, 61-76.
Ford, N. (2015). Introduction to Information Behaviour. London: Facet Publishing.
Frederick, D. E. (2024). Prompt engineering – a disruption in information seeking? Library Hi Tech News, 41(3), 1–5. https://doi.org/10.1108/LHTN-03-2024-0037
Greyling, C. (2023b, July 13). Prompt Tuning, Hard Prompts & Soft Prompts. Medium, [12.10.2024], https://cobusgreyling.medium.com/prompt-tuning-hard-prompts-soft-prompts-49740de6c64c
Hall, B., & McKee, J. (2024). An early or somewhat late ChatGPT guide for librarians. Journal of Business & Finance Librarianship, 29(1), 58–69. https://doi.org/10.1080/08963568.2024.2303944
Halvorson, O. H. (2024). Innovation and Responsibility: Librarians in an Era of Generative AI, Inequality, and Information Overload. SLIS Student Research Journal, 13(2), 4–9.
Hassani, H., & Silva, E. S. (2024). Predictions from Generative Artificial Intelligence Models: Towards a New Benchmark in Forecasting Practice. Information (2078-2489), 15(6), 291. https://doi.org/10.3390/info15060291
Hattatoglu, D. F. (2023, August 22). Prompt Engineering Formulas For ChatGPT and Other Language Models. Academy Team, [12.10.2024], https://medium.com/academy-team/prompt-engineering-formulas-for-chatgpt-and-other-language-models-5de3a922356a
Huang, W., Wang, J., Cong, G. (2024). Zero-shot urban function inference with street view images through prompting a pretrained vision-language model. International Journal of Geographical Information Science, 38(7), 1414–1442. https://doi.org/10.1080/13658816.2024.2347322
Ingwersen, P. (1992). Information Retrieval Interaction. London: Taylor Graham, [12.10.2024], http://peteringwersen.info/publications/0060_ingwersen_iri.pdf
Krakowska, M. (2022). Zachowania informacyjne człowieka w kontekście zjawiska epistemicznej bańki informacyjnej : propozycja nowej koncepcji. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego w Krakowie. Lin, S.-J. (2017). Human-computer interaction research in information retrieval. In: J.D. McDonald, M. Levine-Clark (red.). Encyclopedia of Library and Information Sciences (4th ed.). Boca Raton: CRC Press. https://doi.org/10.1081/E-ELIS4
Litake, O., Park, B. H., Tully, J. L., & Gabriel, R. A. (2024). Constructing synthetic datasets with generative artificial intelligence to train large language models to classify acute renal failure from clinical notes. Journal of the American Medical Informatics Association, 31(6), 1404–1410. https://doi.org/10.1093/jamia/ocae081
Lo, L. S. (2023). The Art and Science of Prompt Engineering: A New Literacy in the Information Age. Internet Reference Services Quarterly, 27(4), 203–210. https://doi.org/10.1080/10875301.2023.2227621
Lund, B. (2023). The prompt engineering librarian. Library Hi Tech News, 40(8), 6–8. https://doi.org/10.1108/LHTN-10-2023-0189
Lynch, C. J., Jensen, E. J., Zamponi, V., O’Brien, K., Frydenlund, E., & Gore, R. (2023). A Structured Narrative Prompt for Prompting Narratives from Large Language Models: Sentiment Assessment of ChatGPT-Generated Narratives and Real Tweets. Future Internet, 15(12), 375. https://doi.org/10.3390/fi15120375
Marchionini, G. (1989). Information‐seeking strategies of novices using a full‐text electronic encyclopedia. Journal of the american society for Information science, 40(1), 54-66.
Marchionini, G. (1995). Information Seeking in Electronic Environments. Cambridge University Press.
Marchionini, G. (2006). Toward human-computer information retrieval. ASIST Bull. June/July, [12.10.2024] https://asistdl.onlinelibrary.wiley.com/doi/10.1002/bult.2006.1720320508
Marques, N., Silva, R. R., & Bernardino, J. (2024). Using ChatGPT in Software Requirements Engineering: A Comprehensive Review. Future Internet, 16(6), 180. https://doi.org/10.3390/fi16060180
Materska, K. (2020). „Exploratory search” – kłopoty architekta informacji z terminologią. Annales Universitatis Paedagogicae Cracoviensis Studia ad Bibliothecarum Scientiam Pertinentia, 18, 213–233. https://doi.org/10.24917/20811861.18.13
McNulty, N. (2024, January 30). Prompt Writing for Generative AI: Mastering Techniques. Medium, [12.10.2024], https://medium.com/@niall.mcnulty/prompt-writing-for-generative-ai-mastering-techniques-d2cea15ad754
Mudadla, S. (2024, May 28). Difference between Prompt Design and Prompt Engineering? Medium, [12.10.2024], https://medium.com/@sujathamudadla1213/difference-between-prompt-design-and-prompt-engineering-2a90af3d1e2a
Nicieja, K. (2023, November 28). Beyond Prompts. Medium. https://medium.com/@kamil/beyond-prompts-1e7499fef910
Nowell, L.S., Norris, J.M., White, D.E., Moules, N.J. (2017). Thematic analysis: striving to meet the trustworthiness criteria. International Journal of Qualitative Methods, 16, 1-13.
Patel, K. (2024, May 7). Mastering Prompt Engineering with the RICCE Framework. Medium, [12.10.2024], https://medium.com/@keyur.shubham2014/mastering-prompt-engineering-with-the-ricce-framework-9ab53fc45b2f
Pisarski, M. (2024). Figury obecności w cyfrowych mediach: od hipertekstu do sztucznej inteligencji. Kraków; Rzeszów: Universitas. ISBN 978-83-242-4006-7
Próchnicka, M. (2004). Człowiek i komputer: dialogowy model wyszukiwania informacji. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego
Próchnicka, M. (2001). Interfejsy dialogowe do systemów wyszukiwania informacji. Zagadnienia Informacji Naukowej, 2 (78), 71–80, [12.10.2024], https://ruj.uj.edu.pl/xmlui/handle/item/65752
Próchnicka, M. (2000). Modelowanie procesu wyszukiwania informacji. In M. Kocój (Ed.), Biblioteka i informacja w komunikowaniu : jubileusz 25-lecia studiów Bibliotekoznawstwa i Informacji Naukowej w Uniwersytecie Jagiellońskim, 116–124, [12.10.2024], https://ruj.uj.edu.pl/xmlui/handle/item/59041
Ruksha, K. (2024, August 29). Prompt Engineering: Classification of Techniques and Prompt Tuning. The Modern Scientist, [12.10.2024], https://medium.com/the-modern-scientist/prompt-engineering-classification-of-techniques-and-prompt-tuning-6d4247b9b64c
Sahoo, S. S., Plasek, J. M., Xu, H., Uzuner, Ö., Cohen, T., Yetisgen, M., Liu, H., Meystre, S., Wang, Y. (2024). Large language models for biomedicine: Foundations, opportunities, challenges, and best practices. Journal of the American Medical Informatics Association, 31(9), 2114–2124. https://doi.org/10.1093/jamia/ocae074
Savolainen, R. (2019). Modeling the interplay of information seeking and information sharing: A conceptual analysis. Aslib Journal of Information Management, 71(4), 518-534.
Savolainen, R. (2017). Information need as trigger and driver of information seeking: a conceptual analysis. Aslib Journal of Information Management, 69(1), 2-21.
Savolainen, R. (2016). Information seeking and searching strategies as plans and patterns of action: A conceptual analysis. Journal of Documentation, 72(6), 1154-1180.
Shi, S., Hu, K., Xie, J., Guo, Y., Wu, H. (2024). Robust scientific text classification using prompt tuning based on data augmentation with L2 regularization. Information Processing & Management, 61(1), N.PAG-N.PAG. https://doi.org/10.1016/j.ipm.2023.103531
Song, C., Cai, F., Zheng, J., Zhao, X., & Shao, T. (2023). AugPrompt: Knowledgeable augmented-trigger prompt for few-shot event classification. Information Processing & Management, 60(4), N.PAG-N.PAG. https://doi.org/10.1016/j.ipm.2022.103153
Spathis, D., & Kawsar, F. (2024). The first step is the hardest: Pitfalls of representing and tokenizing temporal data for large language models. Journal of the American Medical Informatics Association, 31(9), 2151–2158. https://doi.org/10.1093/jamia/ocae090
Spink, A., Cole, C. (red.). (2006). New Directions in Human Information Behavior. Berlin: Springer.
Spink, A., Dee, C. (2007). Cognitive shifts related to interactive information retrieval. Online
Information Review, 31(6), 845–860. https://doi.org/10.1108/14684520710841801
Springs. (2024, April 8). Prompt Engineering: Examples and Best Practices. Medium, [12.10.2024], https://medium.com/@springs_apps/prompt-engineering-examples-and-best-practices-82b1da724643
Srinivasan, K. (2024, July 2). What is Prompt? What is Prompt Engineering & Prompt Tuning? IceApple Tech Talks, [12.10.2024], https://medium.com/iceapple-tech-talks/what-is-prompt-what-is-prompt-engineering-prompt-tuning-3fe628d97cf5
Sufi, F. (2024). Addressing Data Scarcity in the Medical Domain: A GPT-Based Approach for Synthetic Data Generation and Feature Extraction. Information (2078-2489), 15(5), 264. https://doi.org/10.3390/info15050264
Thani, R. A., Hashim, L. (2011). Information needs and Information seeking behaviors of Social Science Graduate Students in Malaysian. International Journal of Business and Social Science, 2(4), 137-143, [12.10.2024], https://ijbssnet.com/journals/Vol._2_No._4;_March_2011/16.pdf
Vogel, M. (2024, August 12). The Perfect Prompt: A Prompt Engineering Cheat Sheet. The Generator, [12.10.2024], https://medium.com/the-generator/the-perfect-prompt-prompt-engineering-cheat-sheet-d0b9c62a2bba
Warraich, S. (2024, March 4). Choosing the Right Prompt: A Practical Guide to Different Prompting Styles. Medium, [12.10.2024], https://medium.com/@simrwaraich/choosing-the-right-prompt-a-practical-guide-to-different-prompting-styles-8e6d6a498a96
Wen, Z., Cao, J., Yang, Y., Wang, H., Yang, R., Liu, S. (2023). DesPrompt: Personality-descriptive prompt tuning for few-shot personality recognition. Information Processing & Management, 60(5), N.PAG-N.PAG. https://doi.org/10.1016/j.ipm.2023.103422
White, R.W., Roth, R.A. (2009). Exploratory search: Beyond the query-response paradigm. Synthesis Lectures on Information Concepts, Retrieval, and Services, 1(1), 1–98. https://doi.org/10.2200/s00174ed1v01y200901i.
Yuan, C., Cao, Y., & Huang, H. (2023). Collective prompt tuning with relation inference for document-level relation extraction. Information Processing & Management, 60(5). https://doi.org/10.1016/j.ipm.2023.103451
Zhang, B. (2023). Prompt Engineers or Librarians? An Exploration. Medical Reference Services Quarterly, 42(4), 381–386. https://doi.org/10.1080/02763869.2023.2250680
Zhang, L. (2024). Exploring Generative Ai with Chatgpt for Possible Applications In Information Literacy Instruction. Journal of Electronic Resources Librarianship, 36(1), 64–69. https://doi.org/10.1080/1941126X.2024.2306058
Zhou, H., Li, M., Xiao, Y., Yang, H., & Zhang, R. (2024). LEAP: LLM instruction-example adaptive prompting framework for biomedical relation extraction. Journal of the American Medical Informatics Association, 31(9), 2010–2018. https://doi.org/10.1093/jamia/ocae147
Zhou, Y. (2023, December 14). Prompt Design Patterns: Mastering the Art and Science of Prompt Engineering. Generative AI Revolution, [12.10.2024], https://medium.com/generative-ai-revolution-ai-native-transformation/prompt-design-patterns-mastering-the-art-and-science-of-prompt-engineering-d3c7eb659bac
Zixuan Yi, Ounis, I., & Macdonald, C. (2024). Contrastive Graph Prompt-tuning for Cross-domain Recommendation. ACM Transactions on Information Systems, 42(2), 1–28. https://doi.org/10.1145/3618298

Opublikowane: 2025-04-08



Monika Krakowska  monika.krakowska@ujedu.pl

Afiliacja: ,  Polska

Magdalena Zych 




Creative Commons License

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.

CC BY-NC-ND 4.0 Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowe