Wkład naukowców w ranking IDUB (Inicjatywa Doskonałości – Uczelnia Badawcza). Polscy badacze w Google Scholar


Veslava Osińska 
https://orcid.org/0000-0002-1306-7832

Afiliacja: Instytut Badań nad Informacją i Komunikacją Uniwersytet Mikołaja Kopernika,  Polska

Bernardeta Iwańska-Cieślik 
https://orcid.org/0000-0003-1841-6162

Afiliacja: Institute of Social Communication and Media Kazimierz Wielki University, Bydgoszcz, Poland,  Polska

Jakub Wojtasik 
https://orcid.org/0000-0001-6157-5658

Afiliacja: Doctoral School of Social Sciences Nicolaus Copernicus University in Toruń, Poland,  Polska

Brett Buttliere 
https://orcid.org/0000-0001-5025-0460

Afiliacja: Center for European and Regional Studies (EUROREG) University of Warsaw,  Polska

Joanna Karłowska-Pik 
https://orcid.org/0000-0001-9157-7355

Afiliacja: Faculty of Mathematics and Computer Science Nicholaus Copernicus University in Toruń,  Polska

Adam F. Kola 
https://orcid.org/0000-0002-0584-6342

Afiliacja: Faculty of Humanities University  Centre  of  Excellence  IMSErt  –  Interacting  Minds,  Societies,  Environments  Institute  for Advanced  Study,  Nicolaus  Copernicus  University  in Toruń, Poland University of Amsterdam, Amsterdam, the Netherlands,  Polska

Abstrakt

Thesis/Objective – Google Scholar is a tool that is widely used not only to search the scientific literature, but also to obtain information on researchers’ scientometric measures. In this article, we will verify whether, based on GS data, users with the highest measures will be identified as associated with the best universities in Poland, called IDUBs. Methodology – Stepwise logistic regression models with cross-validation were used to find variables significantly influencing the  correct  automatic  classification. Findings and  conclusions – The best models in terms of predictive quality were obtained using the h-index, the type of university, the annual number of publications and the year of the first publication as predictors. Student’s t-tests showed statistically significant differences in the mean values of the h-index, the i10 index and the number of publications (p<0.001, p<0.001 and p=0.013, respectively) between researchers from the best 10 universities in Poland (associated as IDUBs) and scientists from other  academies.  The  scholars  characterized  by  high  scientometric  measures were affiliated to IDUB schools – this relationship is observed within the scope of universities, not technical or medical schools. Due to the free and open nature of the GS, the data obtained from it are heterogeneous and often incomplete, making automatic processing and analysis difficult. These complications are particularly evident when aggregated rather than individual data being analysed. Despite these limitations, the results obtained make it possible to cope with the rapid growth of scientometric data and may lead to the creation of new measures for assessing the scientific output of scientists.


Akaike, H. (21 December 1981), This Week’s Citation Classic. Current Contents Engineering, Technology, and Applied Sciences, 12(51), 42 [Hirotogu Akaike comments on how he arrived at AIC].

Altman, D. G., & Bland, J. M. (1995). Statistics notes: the normal distribution. Bmj, 310(6975), 298.

Altman, D.G., & Bland, J. M. (1996). Detecting skewness from summary information. Bmj. 313(7066),1200.

Anders, Michael E., and Dennis P. Evans. “Comparison of PubMed and GoogleScholar literature searches.” Respiratory Care 55.5 (2010): 578-583.

Bar-Ilan, J. (2008). Which h-index? – a comparison of WoS, Scopus and Google Scholar. Scientometrics, 74(2), 257–271. https://doi.org/10.1007/s11192-008-0216-y

Boeker, M., Vach, W., & Motschall, E. (2013). Google Scholar as a replacement for systematicliterature searches: good relative recall and precision are not enough. BMC medical research methodology, 13(1), 1-12. https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-13-131

Bogajczyk, M. (2019). Naukowiec w sieci. Warszawa: Biblioteka Uniwersytecka w Warszawie. https://www.buw.uw.edu.pl//wp-content/uploads/2019/09/Naukowiec-w-sieci_ebook-2.pdf

Bornmann, L., & Williams, R.A. (2013). How to calculate the practical significance of citation impact differences? An empirical example from evaluative institutional bibliometrics using adjusted predictions and marginal effects. Journal of Informetrics, 7(2), 562-574. https://doi.org/10.1016/j.joi.2013.02.005

Bornmann, L., Thor, A., Marx, W., & Schier, H. (2016). The application of bibliometrics to research evaluation in the humanities and social sciences: An exploratory study using normalized Google Scholar data for the publications of a research institute. Journal of the Association for Information Science and Technology, 67(11), 2778-2789.

Bramer, W.M., Giustini, D., Kramer, B.M. et al. The comparative recall of Google Scholar versus PubMed in identical searches for biomedical systematic reviews: a review of searches used in systematic reviews. Systematic Reviews, 2, 115 (2013). https://doi.org/10.1186/2046-4053-2-115

Buttliere, B., & Buder, J. (2017). Personalizing papers using Altmetrics: Comparing paper ‘Quality’or ‘Impact’to person ‘Intelligence’or ‘Personality’. Scientometrics, 111(1), 219-239

Chatterjee, A., Ghosh, A., Chakrabarti, B.K. (2016). Universality of Citation Distributions for Academic Institutions and Journals. PLoS one, 11(1): e0146762. https://doi.org/10.1371/journal.pone.0148863

Costas, R., Nane, GF., & Larivière, V. (2015). Is the year of first publication a good proxy of scholars’ academic age? In A.A. Salah, Y. Tonta, A.A. Akdag Salah (Eds.). Proceedings of the 15th international conference on scientometrics and informetrics (pp. 988–998). Istanbul: Bogaziçi University Printhouse.

CWTS Leiden Ranking (2022). Retrieved April 4, 2022 from: https://www.leidenranking.com/information/indicators

D’Alessandro S. et al. (2020). Promote or Perish? A brief note on academic social networking sites and academic reputation. Journal of Marketing Management, 36, 5/6, p. 405-411.

Dorsch, I. (2017). Relative visibility of authors’ publications in different information services. Scientometrics,112, 917-925.

Elliott, A. C., & Woodward, W. A. (2007). Statistical analysis quick reference guidebook: With SPSS examples. London: Sage.

Gusenbauer, M. (2019a). Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases. Scientometrics, 118(1), 177-214 https://doi.org/10.1007/s11192-018-2958-51

Gusenbauer, M. (2019b). Suitable for Systematic Reviews and Meta-Analyses? The Capacity of 23 Academic Search Engines. Academy of Management Annual Meeting Proceedings 2019(1):12759 DOI: 10.5465/AMBPP.2019.12759abstract

Gusenbauer, M., & Haddaway, N. (2020), Which Academic Search Systems are Suitable for Systematic Reviews or Meta‐Analyses? Evaluating Retrieval Qualities of Google Scholar, PubMed and 26 other Resources. Research Synthesis Methods, 11(2), 181-217. https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1378

Harzing, A.W. (February 28, 2017). Google Scholar is a serious alternative to Web of Science. Harzing.com. Research in International Management. Retrieved July 27, 2021, from: https://harzing.com/blog/2017/02/google-scholar-is-a-seriousalternative-to-web-of-science

Harzing, AW., Alakangas, S. Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics 106, 787–804 (2016). https://doi.org/10.1007/s11192-015-1798-9

Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). Chichester, UK: John Wiley & Sons, Inc.

IDUB (2019). IDUB: Polska Inicjatywa Doskonałości - Uczelnie Badawcze. Forum Akademickie, 11; 12. https://prenumeruj.forumakademickie.pl/fa/2019/11/; https://prenumeruj.forumakademickie.pl/fa/2019/12/

Jacsó, P. (2008). Google Scholar revisited. Online Information Review, 32(1), 102-114. https://www.researchgate.net/publication/220207410_Google_Scholar_revisited

Jacsó, P. (2012). Google Scholar Metrics for Publications: The software and content features of a new open-access bibliometric service. Online Information Review, 36(4), 604-619.

Jensenius, F., Htun, M., Samuels, D., Singer, D., Lawrence, A., & Chwe, M. (2018). The Benefits and Pitfalls of Google Scholar. PS: Political Science & Politics, 51(4), 820-824.

Komunikat Ministra Nauki i Szkolnictwa Wyższego z dnia 11 maja 2018 r. o ustanowieniu przedsięwzięcia pod nazwą „Strategia Doskonałości – Uczelnia Badawcza” (2018). Retrieved September 23, 2021, from: https://www.gov.pl/web/edukacja-i-nauka/komunikat-ministra-nauki-i-szkolnictwa-wyzszego-z-dnia-11-maja-2018-r-o-ustanowieniu-przedsiewziecia-pod-nazwa-strategia-doskonalosci--uczelnia-badawcza

Kulczycki, E. (2011). Google Scholar Citations otwarte dla wszystkich! [online] Warsztat badacza, 17.11.2011. Retrieved March 21, 2022 from: https://ekulczycki.pl/warsztat_badacza/google-scholar-citations-otwarte-dla-wszystkich/

Kulczycki, E. (2013). Jak dodać prace do Google Scholar i zwiększyć liczbę cytowań oraz indeks Hirscha. Poradnik dla początkujących, Poznań: Stowarzyszenie EBIB. https://repozytorium.amu.edu.pl/bitstream/10593/4369/8/Jak_dodac_prace_do_Google_Scholar-v.1.1.pdf

Kwiek, M., Roszka, W. (2021). Gender-based homophily in research: A large-scale study of man-woman collaboration. Journal of Informetrics, 15(3), https://doi.org/10.1016/j.joi.2021.101171

Lewandowski, T. (2014). Google Scholar a repozytoria i biblioteki cyfrowe w Polsce. Otwarta Nauka, August 28, 2014. Retrieved March 23, 2022 from: https://otwartanauka.pl/analysis/case-studies/google-scholar-a-repozytoria-i-biblioteki-cyfrowe-w-polsce?showall=1&limitstart=

Lewandowski, T. (2017). Jak zwiększyć widoczność publikacji naukowych w Internecie z pomocą Google Scholar. Platforma Otwartej Nauki, November 21, 2017. Retrieved March 23, 2022 from: https://bg.uwb.edu.pl/DebataOA2017/materialy/lewandowski_oa_week_2017.pdf

López-Cózar, E.D., Robinson-García, N., & Torres-Salinas, D. (2012). Manipulating Google Scholar Citations and Google Scholar Metrics: simple, easy and tempting. EC3 Working Papers 6: 29 May, 2012. Retrieved June 6, 2021, from: https://arxiv.org/ftp/arxiv/papers/1212/1212.0638.pdf

Martín‑Martín, A., Thelwall, M., Orduna‑Malea, E., López‑Cózar, E.D. (2021). Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’COCI: a multidisciplinary comparison of coverage via citations. Scientometrics, 126 (1), 871-906, https://doi.org/10.1007/s11192-020-03690-4 1 3

Methodology. CWTS Leiden Ranking (2014), Universiteit Leiden Centre for Science and Technology Studies. Retrieved April 4, 2022 from: https://www.leidenranking.com/Content/CWTS%20Leiden%20Ranking%202014.pdf

Milojević, S. (2012). How Are Academic Age, Productivity and Collaboration Related to Citing Behavior of Researchers? PLoS one, 7(11): e49176. https://doi.org/10.1371/journal.pone.0049176

Mingers, J., O’Hanley, J.R. & Okunola, M. (2017). Using Google Scholar institutional level data to evaluate the quality of university research. Scientometrics, 113(1), 1627–1643. https://doi.org/10.1007/s11192-017-2532-6

Moed, H.F., Bar-Ilan, J., & Halevi, G. (2016). A new methodology for comparing Google Scholar and Scopus. Journal of Informetrics, 10 (2), 533-551.

Nauka Polska (2021). Retrieved July 19, 2021, from: https://nauka-polska.pl/#/home/search?_k=ovh688

Norris, M., Oppernheim, Ch. (2007). Comparing alternatives to the Web of Science for coverage of the social sciences’ literature. Journal of Infometrics, 1(2), 161-169.

Orcan, F. (2020). Parametric or non-parametric: Skewness to test normality for mean comparison. International Journal of Assessment Tools in Education, 7(2), 255-265.

Pierwszy konkurs w programie „Inicjatywa doskonałości – uczelnia badawcza” (March 27, 2019). Konstytucja dla Nauki. Retrieved September 23, 2021 from:https://konstytucjadlanauki.gov.pl/pierwszy-konkurs-w-programie-inicjatywa-doskonalosci-uczelnia-badawcza

POL-on. Radon – raporty, analizy, dane (2021). Retrieved July 19, 2021, from: https://radon.nauka.gov.pl/raporty/Kadra2019

Prawo o szkolnictwie wyższym i nauce (2021). Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej z dnia 1 marca 2021 r. w sprawie ogłoszenia jednolitego tekstu ustawy – Prawo o szkolnictwie wyższym i nauce. Dziennik Ustaw, poz. 478, art. 388.

Pulikowski, A. (2015). Widoczność polskich publikacji naukowych w Internecie. Zagadnienia Informacji Naukowej, 53, 1 (105), 59-70.

Radicchi, F., Fortunato, S., Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. PNAS, 105(45), 17268-17272. Retrieved April 3, 2022 from: www.pnas.orgcgidoi10.1073pnas.0806977105

Sauvayre, R. (2022). Types of Errors Hiding on Google Scholar Data. Journal of Medical Internet Research, 24 (5), pp. 1-13.

Shultz, M. (2007). Comparing test searches in PubMed and Google Scholar. Journal of the Medical Library Association, 95(4), 442-445. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2000776/

Simoes, N., & Crespo, N. (2020). A flexible approach for measuring author-level publishing performance. Scientometrics, 122(1), 331-355.

Świgoń, M., Głowacka, E., Kisilowska-Szurmińska, M.(2022). Academia.edu, ResearchGate, Google Scholar, Scopus i Publons (Web of Science) – szczegółowa analiza obecności reprezentantów nauk o komunikacji społecznej i mediach. Media – Kultura – Komunikacja Społeczna, 18, p. 83-101.

Teixeira da Silva, J. A. (2018). The Google Scholar h-index: useful but burdensome metric. Scientometrics, 117(1), 631-635. https://link.springer.com/article/10.1007%2Fs11192-018-2859-7

Teixeira da Silva, J. A. (2021). The i100‑index, i1000‑index and i10,000‑index: expansion and fortification of the Google Scholar h‑index for finer‑scale citation descriptions and researcher classification. Scientometrics, 126 (4), 3667-3672. https://link.springer.com/article/10.1007%2Fs11192-020-03831-9

Thelwall, M., Haustein, S., Larivière, V., & Sugimoto, C. R. (2013). Do altmetrics work? Twitter and ten other social web services. PloS one, 8(5), e64841.

Thelwall, M., & Kousha, K. (2017). ResearchGate versus Google Scholar: Which finds more early citations?. Scientometrics, 112(2), 1125-1131. https://link.springer.com/article/10.1007%2Fs11192-017-2400-4

Thelwall, M., &Wilson, P. (2014). Distributions for cited articles from individual subjects and years. Journal of Informetrics, 8(4), 824-839. https://doi.org/10.1016/j.joi.2014.08.001

Tober, M. (2011). PubMed, ScienceDirect, Scopus or Google Scholar — Which is the best search engine for effective literature research in laser medicine?. Medical Laser Application, 26, 139-144.

Waltman, L., Calero-Medina, C., Kosten, J., Noyons, E.C.M., Tijssen, R.J.W., Van Eck, N.J., Van Leeuwen, T.N., Van Raan, A.F.J., Visser, M.S., & Wouters, P. (2012). The Leiden Ranking 2011/2012: Data collection, indicators, and interpretation. Journal of the American Society for Information Science and Technology, 63(12), 2419-2432.

Waltman, L., &Van Eck, N.J. (2013). Source normalized indicators of citation impact: An overview of different approaches and an empirical comparison. Scientometrics, 96(3), 699-716.

Wang, D., & Barabási, A. (2021). Science of Science. Boston. Publisher: Cambridge University Press.

Williams, R. (2012). Using the margins command to estimate and interpret adjusted predictions and marginal effects. The Stata Journal, 12(2), 308-331.

Yang, K., & Meho, L.I. (2006), Citation Analysis: A Comparison of Google Scholar, Scopus, and Web of Science. Proceedings of American Society for Information Science and Technology, 43: 1-15. https://doi.org/10.1002/meet.14504301185

Yu, G., Keirstead, J., Jefferis, G., Getzinger, G., Cimentada, J., Czapanskiy, M., & Makowski, D. (2021). Analyse Citation Data from Google Scholar [Package]. Retrieved April 4, 2022 from: https://cran.csail.mit.edu/web/packages/scholar/scholar.pdf

Zientek, L. R., Werner, J. M., Campuzano, M. V., & Nimon, K. (2018). The use of Google Scholar for research and research dissemination. New Horizons in Adult Education and Human Resource Development, 30(1), 39-46.

Pobierz

Opublikowane: 2024-02-26



Veslava Osińska 
https://orcid.org/0000-0002-1306-7832

Afiliacja: Instytut Badań nad Informacją i Komunikacją Uniwersytet Mikołaja Kopernika,  Polska

Biogram:

Veslava Osińska – is associate professor at the Institute of Information and Communication Research at the Nicolaus Copernicus University and a principal investigator of the Polish team in the international Chistera project – Bitscope (bitscope.umk.pl). Her interests are multi-scale data visualization methods, in particular science visualization. She is a lector of subjects related to data processing, analyses and visualization. Veslava Osińska is a member of several societies, both national and international: Polish Information Technology Society, International Society of Knowledge Organization and the Association of Polish Scientists in Lithuania.

Bernardeta Iwańska-Cieślik 
https://orcid.org/0000-0003-1841-6162

Afiliacja: Institute of Social Communication and Media Kazimierz Wielki University, Bydgoszcz, Poland,  Polska

Biogram:

Bernardeta Iwańska-Cieślik – Ph.D., assistant professor at the Department of Journalism and Media Research at the Institute of Social Communication and Media at the Kazimierz Wielki University in Bydgoszcz. Her research interests revolve around the history of books and the press in Włocławek, and she also deals with bibliometric issues based on the publishing activity of academic librarians in the field of old books and the press. Author of the book Biblioteka kapituły katedralnej we Włocławku (2013), editor of collective works and several dozen scientific articles, including: Informacja o nowych publikacjach polskich bibliologów i informatologów w przestrzeni sieciowej („Toruńskie Studia Bibliologiczne” 2016).

Jakub Wojtasik 
https://orcid.org/0000-0001-6157-5658

Afiliacja: Doctoral School of Social Sciences Nicolaus Copernicus University in Toruń, Poland,  Polska

Biogram:

Jakub Wojtasik - senior data analyst at the Center for Statistical Analysis at the Nicolaus Copernicus University in Toruń. He is a PhD student at the Doctoral School of Social Sciences in Nicolaus Copernicus University in Toruń. Fellow of the Polish National  Science  Center  and  the  Polish  National  Agency  for Academic Exchange His research interests include issues of mathematical modeling, applications of data mining methods and machine learning  in  economic  models  and  forecasting,  as  well  as optimization theory.

Brett Buttliere 
https://orcid.org/0000-0001-5025-0460

Afiliacja: Center for European and Regional Studies (EUROREG) University of Warsaw,  Polska

Biogram:

Brett Buttliere – Ph.D., works at the Center for European and Regional Studies (EUROREG) at the University of Warsaw. Author of several papers across areas such as psychology, bibliometrics, psychology of science, and communication, his interests mainly came from an understanding that science is done by humans, and that any problems and potential solutions must consider this humanness. He has worked at universities in the United States, the Netherlands, Germany, and Poland, and contributed to conferences across the world. He has variously surveyed scientists about open science (2014), analyzed conflict in scholarly tweets and article keywords (2017), synthesized ‘alternative’ metrics of impact (2017), studied science on Wikipedia (2021), outlined mechanisms enabling shareable analysis scripts (2021), and developed the meta.data() R package (2023). He is actively working on encouraging scientists to engage with and contribute to Wikimedia, encouraging academic societies to host conferences in developing nations, developing more sustainable and creative research environments, and developing a more general and applicable model of minds.

Joanna Karłowska-Pik 
https://orcid.org/0000-0001-9157-7355

Afiliacja: Faculty of Mathematics and Computer Science Nicholaus Copernicus University in Toruń,  Polska

Biogram:

Joanna Karłowska-Pik, assistant professor at the Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Toruń, and Director for the Centre for Statistical Analysis, NCU. Holds a PhD in mathematics. Trainer of IBM SPSS  Statistics  Software.  Research  interests  and  expertise include  stochastic processes,  statistics  and  data  science  – mainly applications of machine learning in medicine and natural sciences.

Adam F. Kola 
https://orcid.org/0000-0002-0584-6342

Afiliacja: Faculty of Humanities University  Centre  of  Excellence  IMSErt  –  Interacting  Minds,  Societies,  Environments  Institute  for Advanced  Study,  Nicolaus  Copernicus  University  in Toruń, Poland University of Amsterdam, Amsterdam, the Netherlands,  Polska

Biogram:

Adam F. Kola is a director of the Center of Excellence IMSErt: Interacting  Minds,  Societies, Environments  and associate professor at Nicolaus Copernicus University, Toruń, Poland. In 2021-2022 he was a visiting researcher at the Institute for Advanced Study,  University of Amsterdam; in 2016-2019 he was a visiting scholar at the University of Chicago. His research has been focused on Eastern and Central European intellectual and literary history, memory studies of the 19th and 20th centuries, and global knowledge transfer. His most recent books are: ‘Studying the Memory of Communism. Genealogies, Social Practices and Communication’ (eds. with R. Halili, G. Franzinetti, 2021, in English) and ‘Socialist Postcolonialism. Memory Reconsolidation’ (2018, in Polish). He is the author of about 100 papers in Polish, Czech, Russian, German, and English, and he translates Czech and English into Polish.





Autor składa oświadczenie o oryginalności przesłanego tekstu, a w umowie wydawniczej przenosi na rzecz Wydawcy nieodpłatnie majątkowe prawa autorskie w zakresie jednorazowego opublikowania dzieła.

CC BY-NC-ND 4.0 Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowe